首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:In Vivo Assessment of Resistant Starch Degradation by the Caecal Microbiota of Mice Using RNA-Based Stable Isotope Probing—A Proof-of-Principle Study
  • 本地全文:下载
  • 作者:Elena Herrmann ; Wayne Young ; Verena Reichert-Grimm
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2018
  • 卷号:10
  • 期号:2
  • 页码:179
  • DOI:10.3390/nu10020179
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Resistant starch (RS) is the digestion resistant fraction of complex polysaccharide starch. By reaching the large bowel, RS can function as a prebiotic carbohydrate, i.e., it can shape the structure and activity of bowel bacterial communities towards a profile that confers health benefits. However, knowledge about the fate of RS in complex intestinal communities and the microbial members involved in its degradation is limited. In this study, 16S ribosomal RNA (rRNA)-based stable isotope probing (RNA-SIP) was used to identify mouse bowel bacteria involved in the assimilation of RS or its derivatives directly in their natural gut habitat. Stable-isotope [U13C]-labeled native potato starch was administrated to mice, and caecal contents were collected before 0 h and 2 h and 4 h after administration. ‘Heavy’, isotope-labeled [13C]RNA species, presumably derived from bacteria that have metabolized the labeled starch, were separated from ‘light’, unlabeled [12C]RNA species by fractionation of isolated total RNA in isopycnic-density gradients. Inspection of different density gradients showed a continuous increase in ‘heavy’ 16S rRNA in caecal samples over the course of the experiment. Sequencing analyses of unlabeled and labeled 16S amplicons particularly suggested a group of unclassified Clostridiales, Dorea, and a few other taxa (Bacteroides, Turicibacter) to be most actively involved in starch assimilation in vivo. In addition, metabolic product analyses revealed that the predominant 13C-labeled short chain fatty acid (SCFA) in caecal contents produced from the [U13C] starch was butyrate. For the first time, this study provides insights into the metabolic transformation of RS by intestinal bacterial communities directly within a gut ecosystem, which will finally help to better understand its prebiotic potential and possible applications in human health.
  • 关键词:resistant starch; gut microbiota; RNA-SIP; Clostridiales ; Dorea resistant starch ; gut microbiota ; RNA-SIP ; Clostridiales ; Dorea
国家哲学社会科学文献中心版权所有