期刊名称:SORT-Statistics and Operations Research Transactions
印刷版ISSN:2013-8830
出版年度:2017
卷号:1
期号:2
页码:191-254
语种:English
出版社:SORT- Statistics and Operations Research Transactions
摘要:Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al. (2010) proposed a general framework to model hierarchical data subject to within-unit correlation and/or overdispersion. The framework extends classical overdispersion models as well as generalized linear mixed models. Subsequent work has examined various aspects that lead to the formulation of several extensions. A unified treatment of the model framework and key extensions is provided. Particular extensions discussed are: explicit calculation of correlation and other moment-based functions, joint modelling of several hierarchical sequences, versions with direct marginally interpretable parameters, zero-inflation in the count case, and influence diagnostics. The basic models and several extensions are illustrated using a set of key examples, one per data type (count, binary, multinomial, ordinal, and time-to-event).
其他摘要:Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al. (2010) proposed a general framework to model hierarchical data subject to within-unit correlation and/or overdispersion. The framework extends classical overdispersion models as well as generalized linear mixed models. Subsequent work has examined various aspects that lead to the formulation of several extensions. A unified treatment of the model framework and key extensions is provided. Particular extensions discussed are: explicit calculation of correlation and other moment-based functions, joint modelling of several hierarchical sequences, versions with direct marginally interpretable parameters, zero-inflation in the count case, and influence diagnostics. The basic models and several extensions are illustrated using a set of key examples, one per data type (count, binary, multinomial, ordinal, and time-to-event).