首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability
  • 本地全文:下载
  • 作者:Syafrudin, Muhammad ; Fitriyani, Norma Latif ; Li, Donglai
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2017
  • 卷号:9
  • 期号:11
  • 页码:1-18
  • 出版社:MDPI, Open Access Journal
  • 摘要:Currently, the manufacturing industry is experiencing a data-driven revolution. There are multiple processes in the manufacturing industry and will eventually generate a large amount of data. Collecting, analyzing and storing a large amount of data are one of key elements of the smart manufacturing industry. To ensure that all processes within the manufacturing industry are functioning smoothly, the big data processing is needed. Thus, in this study an open source-based real-time data processing (OSRDP) architecture framework was proposed. OSRDP architecture framework consists of several open sources technologies, including Apache Kafka, Apache Storm and NoSQL MongoDB that are effective and cost efficient for real-time data processing. Several experiments and impact analysis for manufacturing sustainability are provided. The results showed that the proposed system is capable of processing a massive sensor data efficiently when the number of sensors data and devices increases. In addition, the data mining based on Random Forest is presented to predict the quality of products given the sensor data as the input. The Random Forest successfully classifies the defect and non-defect products, and generates high accuracy compared to other data mining algorithms. This study is expected to support the management in their decision-making for product quality inspection and support manufacturing sustainability.
  • 关键词:manufacturing; big data; real-time processing; Kafka; storm; MongoDB
国家哲学社会科学文献中心版权所有