首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks
  • 本地全文:下载
  • 作者:Lara-Estrada, Leonel ; Rasche, Livia ; Sucar, L. Enrique
  • 期刊名称:Land
  • 印刷版ISSN:2073-445X
  • 出版年度:2018
  • 卷号:7
  • 期号:1
  • 页码:1-13
  • 出版社:MDPI, Open Access Journal
  • 摘要:Climate data availability plays a key role in development processes of policies, services, and planning in the agricultural sector. However, data at the spatial or temporal resolution required is often lacking, or certain values are missing. In this work, we propose to use a Bayesian network approach to generate data for missing variables. As a case study, we use relative humidity, which is an important indicator of land suitability for coffee production. For the model, we first extracted climate data for the variables precipitation, maximum and minimum air temperature, wind speed, solar radiation and relative humidity from the surface reanalysis dataset Climate Forecast System Reanalysis. We then used machine learning algorithms to define the model structure and parameters from the relationships of the variables found in the dataset. Precipitation, maximum and minimum air temperature, wind speed, and solar radiation are then used as proxy variables to infer missing values for monthly relative humidity and relative humidity for the driest month. For this, we used both complete and incomplete initial data. In both scenarios of data availability, the comparison of estimated and measured values of relative humidity shows a high level of agreement. We conclude that using Bayesian Networks is a practical solution to estimate relative humidity for coffee agricultural planning.
  • 关键词:probabilistic modeling; machine learning; modeling climate information; graphical models; proxy climatic variables; land evaluation; Central America; Coffea arabica L.
国家哲学社会科学文献中心版权所有