期刊名称:Journal of Interpolation and Approximation in Scientific Computing
印刷版ISSN:2194-3907
电子版ISSN:2194-3907
出版年度:2016
卷号:2016
期号:2
页码:87-104
DOI:10.5899/2016/jiasc-00107
出版社:ISPACS GmbH
摘要:This paper is devoted to investigate the local asymptotic stability, boundedness and periodic solutions of particular cases of the following general system of difference equations: x_{n+1}=\frac{a_{1}y_{n-1}+a_{2}x_{n-3}+a_{3}}{a_{4}y_{n-1}x_{n-3}+a_{5}},\text{ \ \ \ \ }y_{n+1}=\frac{b_{1}x_{n-1}+b_{2}y_{n-3}+b_{3}}{b_{4}x_{n-1}y_{n-3}+b_{5}}, where the initial conditions $x_{-3},$ $x_{-2},$ $x_{-1},$ $x_{0},$ $y_{-3},$ $y_{-2},$ $y_{-1}$ and $y_{0}$ are arbitrary nonzero real numbers and $a_{i}$ and $b_{i}$ for $i=1,2,3,4,5$ are arbitrary real numbers. Also, we give some numerical examples to illustrate our results.
关键词:Difference equations; Boundedness; Periodic solutions; System of difference equations; Stability