首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A Duality Between Depth-Three Formulas and Approximation by Depth-Two
  • 本地全文:下载
  • 作者:Shuichi Hirahara
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2017
  • 卷号:2017
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We establish an explicit link between depth-3 formulas and one-sided approximation by depth-2 formulas, which were previously studied independently. Specifically, we show that the minimum size of depth-3 formulas is (up to a factor of n) equal to the inverse of the maximum, over all depth-2 formulas, of one-sided-error correlation bound divided by the size of the depth-2 formula, on a certain hard distribution. We apply this duality to obtain several consequences: 1. Any function f can be approximated by a CNF formula of size O ( 2 n n ) with one-sided error and advantage for some , which is tight up to a constant factor. 2. There exists a monotone function f such that f can be approximated by some polynomial-size CNF formula, whereas any monotone CNF formula approximating f requires exponential size. 3. Any depth-3 formula computing the parity function requires ( 2 2 n ) gates, which is tight up to a factor of n . This establishes a quadratic separation between depth-3 circuit size and depth-3 formula size. 4. We give a characterization of the depth-3 monotone circuit complexity of the majority function, in terms of a natural extremal problem on hypergraphs. In particular, we show that a known extension of Turan's theorem gives a tight (up to a polynomial factor) circuit size for computing the majority function by a monotone depth-3 circuit with bottom fan-in 2. 5. AC0[p] has exponentially small one-sided correlation with the parity function for odd prime p.

  • 关键词:circuit complexity ; circuits versus formulas ; depth-2 circuits ; depth-3
国家哲学社会科学文献中心版权所有