期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:44
页码:E9376-E9385
DOI:10.1073/pnas.1707108114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:A spinocerebellar ataxia type 5 (SCA5) L253P mutation in the actin-binding domain (ABD) of β-III-spectrin causes high-affinity actin binding and decreased thermal stability in vitro. Here we show in mammalian cells, at physiological temperature, that the mutant ABD retains high-affinity actin binding. Significantly, we provide evidence that the mutation alters the mobility and recruitment of β-III-spectrin in mammalian cells, pointing to a potential disease mechanism. To explore this mechanism, we developed a Drosophila SCA5 model in which an equivalent mutant Drosophila β-spectrin is expressed in neurons that extend complex dendritic arbors, such as Purkinje cells, targeted in SCA5 pathogenesis. The mutation causes a proximal shift in arborization coincident with decreased β-spectrin localization in distal dendrites. We show that SCA5 β-spectrin dominantly mislocalizes α-spectrin and ankyrin-2, components of the endogenous spectrin cytoskeleton. Our data suggest that high-affinity actin binding by SCA5 β-spectrin interferes with spectrin-actin cytoskeleton dynamics, leading to a loss of a cytoskeletal mechanism in distal dendrites required for dendrite stabilization and arbor outgrowth.