首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:Inhibition of curli assembly and Escherichia coli biofilm formation by the human systemic amyloid precursor transthyretin
  • 本地全文:下载
  • 作者:Neha Jain ; Jörgen Ådén ; Kanna Nagamatsu
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:46
  • 页码:12184-12189
  • DOI:10.1073/pnas.1708805114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:During biofilm formation, Escherichia coli and other Enterobacteriaceae produce an extracellular matrix consisting of curli amyloid fibers and cellulose. The precursor of curli fibers is the amyloidogenic protein CsgA. The human systemic amyloid precursor protein transthyretin (TTR) is known to inhibit amyloid-β (Aβ) aggregation in vitro and suppress the Alzheimer’s-like phenotypes in a transgenic mouse model of Aβ deposition. We hypothesized that TTR might have broad antiamyloid activity because the biophysical properties of amyloids are largely conserved across species and kingdoms. Here, we report that both human WT tetrameric TTR (WT-TTR) and its engineered nontetramer-forming monomer (M-TTR, F87M/L110M) inhibit CsgA amyloid formation in vitro, with M-TTR being the more efficient inhibitor. Preincubation of WT-TTR with small molecules that occupy the T4 binding site eliminated the inhibitory capacity of the tetramer; however, they did not significantly compromise the ability of M-TTR to inhibit CsgA amyloidogenesis. TTR also inhibited amyloid-dependent biofilm formation in two different bacterial species with no apparent bactericidal or bacteriostatic effects. These discoveries suggest that TTR is an effective antibiofilm agent that could potentiate antibiotic efficacy in infections associated with significant biofilm formation.
  • 关键词:amyloids ; CsgA ; transthyretin ; biofilms ; curli
国家哲学社会科学文献中心版权所有