期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:46
页码:12225-12230
DOI:10.1073/pnas.1711285114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Bacterial chromosome (nucleoid) conformation dictates faithful regulation of gene transcription. The conformation is condition-dependent and is guided by several nucleoid-associated proteins (NAPs) and at least one nucleoid-associated noncoding RNA, naRNA4. Here we investigated the molecular mechanism of how naRNA4 and the major NAP, HU, acting together organize the chromosome structure by establishing multiple DNA–DNA contacts (DNA condensation). We demonstrate that naRNA4 uniquely acts by forming complexes that may not involve long stretches of DNA–RNA hybrid. Also, uncommonly, HU, a chromosome-associated protein that is essential in the DNA–RNA interactions, is not present in the final complex. Thus, HU plays a catalytic (chaperone) role in the naRNA4-mediated DNA condensation process.
关键词:chromosome structure ; DNA–RNA interaction ; noncoding RNA ; Escherichia coli ; HU protein