首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Discriminant WSRC for Large-Scale Plant Species Recognition
  • 本地全文:下载
  • 作者:Shanwen Zhang ; Chuanlei Zhang ; Yihai Zhu
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/9581292
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In sparse representation based classification (SRC) and weighted SRC (WSRC), it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC) is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.
国家哲学社会科学文献中心版权所有