首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:An Enhanced Frequent Pattern Growth Based on MapReduce for Mining Association Rules
  • 本地全文:下载
  • 作者:ARKAN A. G. AL-HAMODI ; SONGFENG LU ; YAHYA E. A. AL-SALHI
  • 期刊名称:International Journal of Data Mining & Knowledge Management Process
  • 印刷版ISSN:2231-007X
  • 电子版ISSN:2230-9608
  • 出版年度:2016
  • 卷号:6
  • 期号:2
  • 页码:19
  • DOI:10.5121/ijdkp.2016.6202
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:In mining frequent itemsets, one of most important algorithm is FP-growth. FP-growth proposes analgorithm to compress information needed for mining frequent itemsets in FP-tree and recursivelyconstructs FP-trees to find all frequent itemsets. In this paper, we propose the EFP-growth (enhanced FPgrowth)algorithm to achieve the quality of FP-growth. Our proposed method implemented the EFPGrowthbased on MapReduce framework using Hadoop approach. New method has high achievingperformance compared with the basic FP-Growth. The EFP-growth it can work with the large datasets todiscovery frequent patterns in a transaction database. Based on our method, the execution time underdifferent minimum supports is decreased..
  • 关键词:Association Rule; frequent pattern; Mapreduce; Hadoop.
国家哲学社会科学文献中心版权所有