首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Parameterized Property Testing of Functions
  • 本地全文:下载
  • 作者:Ramesh Krishnan S. Pallavoor ; Sofya Raskhodnikova ; Nithin Varma
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:67
  • 页码:12:1-12:17
  • DOI:10.4230/LIPIcs.ITCS.2017.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We investigate the parameters in terms of which the complexity of sublinear-time algorithms should be expressed. Our goal is to find input parameters that are tailored to the combinatorics of the specific problem being studied and design algorithms that run faster when these parameters are small. This direction enables us to surpass the (worst-case) lower bounds, expressed in terms of the input size, for several problems. Our aim is to develop a similar level of understanding of the complexity of sublinear-time algorithms to the one that was enabled by research in parameterized complexity for classical algorithms. Specifically, we focus on testing properties of functions. By parameterizing the query complexity in terms of the size r of the image of the input function, we obtain testers for monotonicity and convexity of functions of the form f:[n]\to \mathbb{R} with query complexity O(\log r), with no dependence on n. The result for monotonicity circumvents the \Omega(\log n) lower bound by Fischer (Inf. Comput., 2004) for this problem. We present several other parameterized testers, providing compelling evidence that expressing the query complexity of property testers in terms of the input size is not always the best choice.
  • 关键词:Sublinear algorithms; property testing; parameterization; monotonicity; convexity
国家哲学社会科学文献中心版权所有