首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:An Improved Homomorphism Preservation Theorem From Lower Bounds in Circuit Complexity
  • 本地全文:下载
  • 作者:Benjamin Rossman
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:67
  • 页码:27:1-27:17
  • DOI:10.4230/LIPIcs.ITCS.2017.27
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Previous work of the author [Rossmann'08] showed that the Homomorphism Preservation Theorem of classical model theory remains valid when its statement is restricted to finite structures. In this paper, we give a new proof of this result via a reduction to lower bounds in circuit complexity, specifically on the AC0 formula size of the colored subgraph isomorphism problem. Formally, we show the following: if a first-order sentence of quantifier-rank k is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive sentence of quantifier-rank poly(k). Quantitatively, this improves the result of [Rossmann'08], where the upper bound on quantifier-rank is a non-elementary function of k.
  • 关键词:circuit complexity; finite model theory
国家哲学社会科学文献中心版权所有