摘要:We study an extension of MTL in pointwise time with regular expression guarded modality Reg_I(re) where re is a rational expression over subformulae. We study the decidability and expressiveness of this extension (MTL+Ureg+Reg), called RegMTL, as well as its fragment SfrMTL where only star-free rational expressions are allowed. Using the technique of temporal projections, we show that RegMTL has decidable satisfiability by giving an equisatisfiable reduction to MTL. We also identify a subclass MITL+UReg of RegMTL for which our equisatisfiable reduction gives rise to formulae of MITL, yielding elementary decidability. As our second main result, we show a tight automaton-logic connection between SfrMTL and partially ordered (or very weak) 1-clock alternating timed automata.