首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Variations on Inductive-Recursive Definitions
  • 本地全文:下载
  • 作者:Neil Ghani ; Conor McBride ; Fredrik Nordvall Forsberg
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:83
  • 页码:63:1-63:13
  • DOI:10.4230/LIPIcs.MFCS.2017.63
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Dybjer and Setzer introduced the definitional principle of inductive-recursively defined families - i.e. of families (U : Set, T : U -> D) such that the inductive definition of U may depend on the recursively defined T --- by defining a type DS D E of codes. Each c : DS D E defines a functor [c] : Fam D -> Fam E, and (U, T) = \mu [c] : Fam D is exhibited as the initial algebra of [c]. This paper considers the composition of DS-definable functors: Given F : Fam C -> Fam D and G : Fam D -> Fam E, is G \circ F : Fam C -> Fam E DS-definable, if F and G are? We show that this is the case if and only if powers of families are DS-definable, which seems unlikely. To construct composition, we present two new systems UF and PN of codes for inductive-recursive definitions, with UF a subsytem of DS a subsystem of PN. Both UF and PN are closed under composition. Since PN defines a potentially larger class of functors, we show that there is a model where initial algebras of PN-functors exist by adapting Dybjer-Setzer's proof for DS.
  • 关键词:Type Theory; induction-recursion; initial-algebra semantics
国家哲学社会科学文献中心版权所有