首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Fractal Intersections and Products via Algorithmic Dimension
  • 本地全文:下载
  • 作者:Neil Lutz
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:83
  • 页码:58:1-58:12
  • DOI:10.4230/LIPIcs.MFCS.2017.58
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Algorithmic dimensions quantify the algorithmic information density of individual points and may be defined in terms of Kolmogorov complexity. This work uses these dimensions to bound the classical Hausdorff and packing dimensions of intersections and Cartesian products of fractals in Euclidean spaces. This approach shows that a known intersection formula for Borel sets holds for arbitrary sets, and it significantly simplifies the proof of a known product formula. Both of these formulas are prominent, fundamental results in fractal geometry that are taught in typical undergraduate courses on the subject.
  • 关键词:algorithmic randomness; geometric measure theory; Hausdorff dimension; Kolmogorov complexity
国家哲学社会科学文献中心版权所有