首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems
  • 本地全文:下载
  • 作者:Eric Allender ; Shuichi Hirahara
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:83
  • 页码:54:1-54:14
  • DOI:10.4230/LIPIcs.MFCS.2017.54
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Minimum Circuit Size Problem (MCSP) and a related problem (MKTP) that deals with time-bounded Kolmogorov complexity are prominent candidates for NP-intermediate status. We show that, under very modest cryptographic assumptions (such as the existence of one-way functions), the problem of approximating the minimum circuit size (or time-bounded Kolmogorov complexity) within a factor of n^{1 - o(1)} is indeed NP-intermediate. To the best of our knowledge, these problems are the first natural NP-intermediate problems under the existence of an arbitrary one-way function. We also prove that MKTP is hard for the complexity class DET under non-uniform NC^0 reductions. This is surprising, since prior work on MCSP and MKTP had highlighted weaknesses of "local" reductions such as NC^0 reductions. We exploit this local reduction to obtain several new consequences: * MKTP is not in AC^0[p]. * Circuit size lower bounds are equivalent to hardness of a relativized version MKTP^A of MKTP under a class of uniform AC^0 reductions, for a large class of sets A. * Hardness of MCSP^A implies hardness of MKTP^A for a wide class of sets A. This is the first result directly relating the complexity of MCSP^A and MKTP^A, for any A.
  • 关键词:computational complexity; Kolmogorov complexity; circuit size
国家哲学社会科学文献中心版权所有