摘要:Max-plus automata are quantitative extensions of automata designed to associate an integer with every non-empty word. A pair of distinct words is said to be an identity for a class of max-plus automata if each of the automata in the class computes the same value on the two words. We give the shortest identities holding for the class of max-plus automata with two states. For this, we exhibit an interesting list of necessary conditions for an identity to hold. Moreover, this result provides a counter-example of a conjecture of Izhakian, concerning the minimality of certain identities.