首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Optimal Matroid Partitioning Problems
  • 本地全文:下载
  • 作者:Yasushi Kawase ; Kei Kimura ; Kazuhisa Makino
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:92
  • 页码:51:1-51:13
  • DOI:10.4230/LIPIcs.ISAAC.2017.51
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper studies optimal matroid partitioning problems for various objective functions. In the problem, we are given a finite set E and k weighted matroids (E, \mathcal{I}_i, w_i), i = 1, \dots, k, and our task is to find a minimum partition (I_1,\dots,I_k) of E such that I_i \in \mathcal{I}_i for all i. For each objective function, we give a polynomial-time algorithm or prove NP-hardness. In particular, for the case when the given weighted matroids are identical and the objective function is the sum of the maximum weight in each set (i.e., \sum_{i=1}^k\max_{e\in I_i}w_i(e)), we show that the problem is strongly NP-hard but admits a PTAS.
  • 关键词:Matroids; Partitioning problem; PTAS; NP-hardness
国家哲学社会科学文献中心版权所有