首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Faster DBScan and HDBScan in Low-Dimensional Euclidean Spaces
  • 本地全文:下载
  • 作者:Mark de Berg ; Ade Gunawan ; Marcel Roeloffzen
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:92
  • 页码:25:1-25:13
  • DOI:10.4230/LIPIcs.ISAAC.2017.25
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present a new algorithm for the widely used density-based clustering method DBScan. Our algorithm computes the DBScan-clustering in O(n log n) time in R^2, irrespective of the scale parameter \eps, but assuming the second parameter MinPts is set to a fixed constant, as is the case in practice. We also present an O(n log n) randomized algorithm for HDBScan in the plane---HDBScans is a hierarchical version of DBScan introduced recently---and we show how to compute an approximate version of HDBScan in near-linear time in any fixed dimension.
  • 关键词:Density-based clustering; hierarchical clustering
国家哲学社会科学文献中心版权所有