首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Shortcuts for the Circle
  • 本地全文:下载
  • 作者:Sang Won Bae ; Mark de Berg ; Otfried Cheong
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:92
  • 页码:9:1-9:13
  • DOI:10.4230/LIPIcs.ISAAC.2017.9
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let C be the unit circle in R^2. We can view C as a plane graph whose vertices are all the points on C, and the distance between any two points on C is the length of the smaller arc between them. We consider a graph augmentation problem on C, where we want to place k >= 1 shortcuts on C such that the diameter of the resulting graph is minimized. We analyze for each k with 1 <= k <= 7 what the optimal set of shortcuts is. Interestingly, the minimum diameter one can obtain is not a strictly decreasing function of k. For example, with seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove that the optimal diameter is 2 + Theta(1/k^(2/3)) for any k.
  • 关键词:Computational geometry; graph augmentation problem; circle; shortcut; diameter
国家哲学社会科学文献中心版权所有