首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A FRAMEWORK FOR SEMENTIC LEVEL SOCIAL SENTIMENT ANALYSIS MODEL
  • 本地全文:下载
  • 作者:MADHU BALA MYNENI ; L V NARASIMHA PRASAD ; J SIRISHA DEVI
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2017
  • 卷号:95
  • 期号:16
  • 页码:4049
  • 出版社:Journal of Theoretical and Applied
  • 摘要:Social sentiment analysis is playing a vital role in analytics applications like product assessments, people opinions on sudden events and disaster assessments etc. Now the current research is focusing on dynamic big data analysis. The rich sources of dynamic data are twitter, face book, linkedln, snapchat, instagram, reddit and e-commerce web resources. In this paper the importance of semantic level social sentiment analysis with issues, tools and algorithms and machine learning algorithms role are discussed. A case study on Indian railway passenger tweets analysis is discussed and finds the sentiment of passengers on railway services.
  • 关键词:Social Sentiment; Machine Learning; Text Processing
国家哲学社会科学文献中心版权所有