首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Numerical Analysis of Cavitation Phenomena with Variable Speed Centrifugal Pump
  • 本地全文:下载
  • 作者:MD RAKIBUZZAMAN ; Kyungwuk Kim ; Sang-Ho Suh
  • 期刊名称:Bulletin of the Institute of Heat Engineering
  • 印刷版ISSN:2083-4187
  • 出版年度:2016
  • 卷号:96
  • 期号:4
  • 页码:306
  • 语种:English
  • 出版社:Warsaw University of Technology
  • 摘要:Cavitation is an abnormal physical phenomenon which can be generated in relatively low pressure regions in centrifugalpumps. In predicting and understanding cavitation in the pumps, it is important to secure their efficiency and reliability. Thepurpose of this study is to analyze the cavitation flows in centrifugal pumps with variable speeds through numerical methods.The Rayleigh–Plesset cavitation model was adapted as the source term for inter-phase mass transfer in order to predict andunderstand the cavitation performances. The Reynolds-average Navier-Stokes (RANS) equations were discretized by thefinite volume method. The two-equation SST turbulence model was accounted for turbulent flows. The numerical analysisresults were validated with experimental data and it was found that both results were in good accordance. The cavitationperformances were obtained for variable speeds with different temperatures and the effects on cavitation were describedaccording to different cavitation numbers. Cavitation performances were also observed for different centrifugal pump stages(1st and 2nd). The performances of cavitation decreased with the increase of rotational speed. In addition, the development ofcavitation is elucidated according to the different temperatures, and the effects of water vapor volume fraction are discussed.
  • 其他摘要:Cavitation is an abnormal physical phenomenon which can be generated in relatively low pressure regions in centrifugal pumps. In predicting and understanding cavitation in the pumps, it is important to secure their efficiency and reliability. The purpose of this study is to analyze the cavitation flows in centrifugal pumps with variable speeds through numerical methods. The Rayleigh–Plesset cavitation model was adapted as the source term for inter-phase mass transfer in order to predict and understand the cavitation performances. The Reynolds-average Navier-Stokes (RANS) equations were discretized by the finite volume method. The two-equation SST turbulence model was accounted for turbulent flows. The numerical analysis results were validated with experimental data and it was found that both results were in good accordance. The cavitation performances were obtained for variable speeds with different temperatures and the effects on cavitation were described according to different cavitation numbers. Cavitation performances were also observed for different centrifugal pump stages (1st and 2nd). The performances of cavitation decreased with the increase of rotational speed. In addition, the development of cavitation is elucidated according to the different temperatures, and the effects of water vapor volume fraction are discussed.
  • 关键词:Cavitation performance; Variable speed; Rayleigh-Plesset cavitation model; RANS equation; SST Turbulence Model
国家哲学社会科学文献中心版权所有