摘要:ABSTRACT Aromatase is a cytochrome P450 enzyme (CYP19A1 isoform) able to catalyze the conversion of androgens to estrogens. The aromatase gene mutations highlighted the action of estrogen as one of the main regulators of bone maturation and closure of bone plate. The use of aromatase inhibitors (AI) in boys with short stature has showed its capability to improve the predicted final height. Anastrozole (ANZ) and letrozole (LTZ) are nonsteroidal inhibitors able to bind reversibly to the heme group of cytochrome P450. In this review, we describe the pharmacokinetic profile of both drugs, discussing possible drug interactions between ANZ and LTZ with other drugs. AIs are triazolic compounds that can induce or suppress cytochrome P450 enzymes, interfering with metabolism of other compounds. Hydroxilation, N-dealkylation and glucoronidation are involved in the metabolism of AIs. Drug interactions can occur with azole antifungals, such as ketoconazole, by inhibiting CYP3A4 and by reducing the clearance of AIs. Antiepileptic drugs (lamotrigine, phenobarbital, and phenytoin) also inhibit aromatase. Concomitant use of phenobarbital or valproate has a synergistic effect on aromatase inhibition. Therefore, it is important to understand the pharmacokinetics of AIs, recognizing and avoiding possible drug interactions and offering a safer prescription profile of this class of aromatase inhibitors. Arch Endocrinol Metab. 2017;61(3):391-7.
其他摘要:ABSTRACT Aromatase is a cytochrome P450 enzyme (CYP19A1 isoform) able to catalyze the conversion of androgens to estrogens. The aromatase gene mutations highlighted the action of estrogen as one of the main regulators of bone maturation and closure of bone plate. The use of aromatase inhibitors (AI) in boys with short stature has showed its capability to improve the predicted final height. Anastrozole (ANZ) and letrozole (LTZ) are nonsteroidal inhibitors able to bind reversibly to the heme group of cytochrome P450. In this review, we describe the pharmacokinetic profile of both drugs, discussing possible drug interactions between ANZ and LTZ with other drugs. AIs are triazolic compounds that can induce or suppress cytochrome P450 enzymes, interfering with metabolism of other compounds. Hydroxilation, N-dealkylation and glucoronidation are involved in the metabolism of AIs. Drug interactions can occur with azole antifungals, such as ketoconazole, by inhibiting CYP3A4 and by reducing the clearance of AIs. Antiepileptic drugs (lamotrigine, phenobarbital, and phenytoin) also inhibit aromatase. Concomitant use of phenobarbital or valproate has a synergistic effect on aromatase inhibition. Therefore, it is important to understand the pharmacokinetics of AIs, recognizing and avoiding possible drug interactions and offering a safer prescription profile of this class of aromatase inhibitors. Arch Endocrinol Metab. 2017;61(3):391-7.