首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Quantile Regression Based on Laplacian Manifold Regularizer with the Data Sparsity in l1 Spaces
  • 本地全文:下载
  • 作者:Ru Feng ; Shuang Chen ; Lanlan Rong
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2017
  • 卷号:07
  • 期号:05
  • 页码:786-802
  • DOI:10.4236/ojs.2017.75056
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, we consider the regularized learning schemes based on l 1 -regularizer and pinball loss in a data dependent hypothesis space. The target is the error analysis for the quantile regression learning. There is no regularized condition with the kernel function, excepting continuity and boundness. The graph-based semi-supervised algorithm leads to an extra error term called manifold error. Part of new error bounds and convergence rates are exactly derived with the techniques consisting of l 1 -empirical covering number and boundness decomposition.
  • 关键词:Semi-Supervised Learning;Conditional Quantile Regression;l1-Regularizer;Manifold-Regularizer;Pinball Loss
国家哲学社会科学文献中心版权所有