首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A New Approach for Mobile Advertising Click-Through Rate Estimation Based on Deep Belief Nets
  • 本地全文:下载
  • 作者:Jie-Hao Chen ; Zi-Qian Zhao ; Ji-Yun Shi
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/7259762
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In recent years, with the rapid development of mobile Internet and its business applications, mobile advertising Click-Through Rate (CTR) estimation has become a hot research direction in the field of computational advertising, which is used to achieve accurate advertisement delivery for the best benefits in the three-side game between media, advertisers, and audiences. Current research on the estimation of CTR mainly uses the methods and models of machine learning, such as linear model or recommendation algorithms. However, most of these methods are insufficient to extract the data features and cannot reflect the nonlinear relationship between different features. In order to solve these problems, we propose a new model based on Deep Belief Nets to predict the CTR of mobile advertising, which combines together the powerful data representation and feature extraction capability of Deep Belief Nets, with the advantage of simplicity of traditional Logistic Regression models. Based on the training dataset with the information of over 40 million mobile advertisements during a period of 10 days, our experiments show that our new model has better estimation accuracy than the classic Logistic Regression (LR) model by 5.57% and Support Vector Regression (SVR) model by 5.80%.
国家哲学社会科学文献中心版权所有