首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:An Effective Semi-Supervised Clustering Framework Integrating Pairwise Constraints and Attribute Preferences
  • 其他标题:An Effective Semi-Supervised Clustering Framework Integrating Pairwise Constraints and Attribute Preferences
  • 作者:Wang, Jinlong ; Wu, Shunyao ; Wen, Can
  • 期刊名称:COMPUTING AND INFORMATICS
  • 印刷版ISSN:1335-9150
  • 出版年度:2012
  • 卷号:31
  • 期号:3
  • 页码:597
  • 语种:English
  • 出版社:COMPUTING AND INFORMATICS
  • 摘要:Semi-supervised clustering, pairwise, attribute preferenceBoth the instance level knowledge and the attribute level knowledge can improve clustering quality, but how to effectively utilize both of them is an essential problem to solve. This paper proposes a wrapper framework for semi-supervised clustering, which aims to gracely integrate both kinds of priori knowledge in the clustering process, the instance level knowledge in the form of pairwise constraints and the attribute level knowledge in the form of attribute order preferences. The wrapped algorithm is then designed as a semi-supervised clustering process which transforms this clustering problem into an optimization problem. The experimental results demonstrate the effectiveness and potential of proposed method.
  • 关键词:Semi-supervised clustering; pairwise; attribute preference
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有