首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:The Combination Forecasting Model of Grain Production Based on Stepwise Regression Method and RBF Neural Network
  • 作者:Lihua Yang ; Baolin Li
  • 期刊名称:Advance Journal of Food Science and Technology
  • 印刷版ISSN:2042-4868
  • 电子版ISSN:2042-4876
  • 出版年度:2015
  • 卷号:7
  • 期号:11
  • 页码:891-895
  • DOI:10.19026/ajfst.7.2528
  • 出版社:MAXWELL Science Publication
  • 摘要:In order to improve the accuracy of grain production forecasting, this study proposed a new combination forecasting model, the model combined stepwise regression method with RBF neural network by assigning proper weights using inverse variance method. By comparing different criteria, the result indicates that the combination forecasting model is superior to other models. The performance of the models is measured using three types of error measurement, which are Mean Absolute Percentage Error (MAPE), Theil Inequality Coefficient (Theil IC) and Root Mean Squared Error (RMSE). The model with smallest value of MAPE, Theil IC and RMSE stands out to be the best model in predicting the grain production. Based on the MAPE, Theil IC and RMSE evaluation criteria, the combination model can reduce the forecasting error and has high prediction accuracy in grain production forecasting, making the decision more scientific and rational.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有