期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2017
卷号:8
期号:9
DOI:10.14569/IJACSA.2017.080948
出版社:Science and Information Society (SAI)
摘要:This paper presents a comparative study of fuzzy inference system (FIS) with respect to Mamdani and Sugeno FISs to show the accuracy and precision of quality of web service (QoWS) compliance monitoring. We used these two types of FIS for designing the QoWS compliance monitoring model. Clustering validity index is used to optimize the number of clusters of both models. Then both models are constructed based on Fuzzy CMeans (FCM) clustering algorithm. Simulation results with a Mamdani model, a Sugeno model and a crisp-based model for benchmark are presented. We consider different levels of noise (to represent uncertainties) in the simulations for comparison and to analyze the performance of the models when applied in QoWS compliance monitoring. The results show that Sugeno FIS outperforms Mamdani FIS in terms of accuracy and precision by producing better total error, error percentage, precision, mean squared error and root mean squared error measurements.The advantage of using fuzzy-based model is also verified with benchmark model.
关键词:Quality of web service (QoWS) monitoring; fuzzy inference system; QoS