首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Brief Announcement: A Note on Hardness of Diameter Approximation
  • 本地全文:下载
  • 作者:Karl Bringmann ; Sebastian Krinninger
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:91
  • 页码:44:1-44:3
  • DOI:10.4230/LIPIcs.DISC.2017.44
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We revisit the hardness of approximating the diameter of a network. In the CONGEST model, ~Omega(n) rounds are necessary to compute the diameter [Frischknecht et al. SODA'12]. Abboud et al. [DISC 2016] extended this result to sparse graphs and, at a more fine-grained level, showed that, for any integer 1 <= l <= polylog(n) , distinguishing between networks of diameter 4l + 2 and 6l + 1 requires ~Omega(n) rounds. We slightly tighten this result by showing that even distinguishing between diameter 2l + 1 and 3l + 1 requires ~Omega(n) rounds. The reduction of Abboud et al. is inspired by recent conditional lower bounds in the RAM model, where the orthogonal vectors problem plays a pivotal role. In our new lower bound, we make the connection to orthogonal vectors explicit, leading to a conceptually more streamlined exposition. This is suited for teaching both the lower bound in the CONGEST model and the conditional lower bound in the RAM model.
  • 关键词:diameter; fine-grained reductions; conditional lower bounds
国家哲学社会科学文献中心版权所有