首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Sublogarithmic Distributed Algorithms for Lovász Local Lemma, and the Complexity Hierarchy
  • 本地全文:下载
  • 作者:Manuela Fischer ; Mohsen Ghaffari
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:91
  • 页码:18:1-18:16
  • DOI:10.4230/LIPIcs.DISC.2017.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Locally Checkable Labeling (LCL) problems include essentially all the classic problems of LOCAL distributed algorithms. In a recent enlightening revelation, Chang and Pettie [FOCS'17] showed that any LCL (on bounded degree graphs) that has an o(log n)-round randomized algorithm can be solved in T_(LLL)(n) rounds, which is the randomized complexity of solving (a relaxed variant of) the Lovasz Local Lemma (LLL) on bounded degree n-node graphs. Currently, the best known upper bound on T_(LLL)(n) is O(log n), by Chung, Pettie, and Su [PODC'14], while the best known lower bound is Omega(log log n), by Brandt et al. [STOC'16]. Chang and Pettie conjectured that there should be an O(log log n)-round algorithm (on bounded degree graphs). Making the first step of progress towards this conjecture, and providing a significant improvement on the algorithm of Chung et al. [PODC'14], we prove that T_(LLL)(n)= 2^O(sqrt(log log n)). Thus, any o(log n)-round randomized distributed algorithm for any LCL problem on bounded degree graphs can be automatically sped up to run in 2^O(sqrt(log log n)) rounds. Using this improvement and a number of other ideas, we also improve the complexity of a number of graph coloring problems (in arbitrary degree graphs) from the O(log n)-round results of Chung, Pettie and Su [PODC'14] to 2^O(sqrt(log log n)). These problems include defective coloring, frugal coloring, and list vertex-coloring.
  • 关键词:Distributed Graph Algorithms; the Lov'{a
国家哲学社会科学文献中心版权所有