首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Online Model Learning of Buildings Using Stochastic Hybrid Systems Based on Gaussian Processes
  • 本地全文:下载
  • 作者:Hamzah Abdel-Aziz ; Xenofon Koutsoukos
  • 期刊名称:Journal of Control Science and Engineering
  • 印刷版ISSN:1687-5249
  • 电子版ISSN:1687-5257
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/3035892
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Dynamical models are essential for model-based control methodologies which allow smart buildings to operate autonomously in an energy and cost efficient manner. However, buildings have complex thermal dynamics which are affected externally by the environment and internally by thermal loads such as equipment and occupancy. Moreover, the physical parameters of buildings may change over time as the buildings age or due to changes in the buildings’ configuration or structure. In this paper, we introduce an online model learning methodology to identify a nonparametric dynamical model for buildings when the thermal load is latent (i.e., the thermal load cannot be measured). The proposed model is based on stochastic hybrid systems, where the discrete state describes the level of the thermal load and the continuous dynamics represented by Gaussian processes describe the thermal dynamics of the air temperature. We demonstrate the evaluation of the proposed model using two-zone and five-zone buildings. The data for both experiments are generated using the EnergyPlus software. Experimental results show that the proposed model estimates the thermal load level correctly and predicts the thermal behavior with good performance.
国家哲学社会科学文献中心版权所有