首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:S-KACA Anonymity Privacy Protection Based on Clustering Algorithm
  • 本地全文:下载
  • 作者:MAO Qingyang ; HU Yan
  • 期刊名称:Lecture Notes in Engineering and Computer Science
  • 印刷版ISSN:2078-0958
  • 电子版ISSN:2078-0966
  • 出版年度:2017
  • 卷号:2227&2228
  • 页码:466-472
  • 出版社:Newswood and International Association of Engineers
  • 摘要:In order to prevent data disclosure in the privacy of individuals, privacy protection technology continues to improve, the S - KACA algorithm can protect the sensitive privacy attributes and make the published data available, but it sets a privacy protection parameter when protecting sensitive privacy information, which results in the low efficiency of the algorithm and does not apply to the large - scale data set. In order to solve this problem, an algorithm called K - Prototypes - S - KACA is proposed, which combin es the e fficient K - Prototypes clustering algorithm with S - KACA algorithm. Firstly, the algorith m divides the microdata set into several slightly larger clusters by clustering algorithm K - Prototypes, and then using S - KACA algorithm anonymizes these microdat a set. Experiments show that the algorithm is similar to S - KACA algorithm in terms of privacy protection and data availability, but the efficiency of the algorithm is greatly improved.
  • 关键词:K ; - ; anonymity; privacy pr ; otection; clustering ; algorithm; KACA ; algorithm ; ; K ; - ; Prototypes ; - ; S ; - ; KACA ; algorithm
国家哲学社会科学文献中心版权所有