首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Finding Axis-Parallel Rectangles of Fixed Perimeter or Area Containing the Largest Number of Points
  • 本地全文:下载
  • 作者:Haim Kaplan ; Sasanka Roy ; Micha Sharir
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:87
  • 页码:52:1-52:13
  • DOI:10.4230/LIPIcs.ESA.2017.52
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let P be a set of n points in the plane in general position, and consider the problem of finding an axis-parallel rectangle with a given perimeter, or area, or diagonal, that encloses the maximum number of points of P. We present an exact algorithm that finds such a rectangle in O(n^{5/2} log n) time, and, for the case of a fixed perimeter or diagonal, we also obtain (i) an improved exact algorithm that runs in O(nk^{3/2} log k) time, and (ii) an approximation algorithm that finds, in O(n+(n/(k epsilon^5))*log^{5/2}(n/k)log((1/epsilon) log(n/k))) time, a rectangle of the given perimeter or diagonal that contains at least (1-epsilon)k points of P, where k is the optimum value. We then show how to turn this algorithm into one that finds, for a given k, an axis-parallel rectangle of smallest perimeter (or area, or diagonal) that contains k points of P. We obtain the first subcubic algorithms for these problems, significantly improving the current state of the art.
  • 关键词:Computational geometry; geometric optimization; rectangles; perimeter; area
国家哲学社会科学文献中心版权所有