首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Tight Lower Bounds for the Complexity of Multicoloring
  • 本地全文:下载
  • 作者:Marthe Bonamy ; Lukasz Kowalik ; Michal Pilipczuk
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:87
  • 页码:18:1-18:14
  • DOI:10.4230/LIPIcs.ESA.2017.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the multicoloring problem, also known as (a:b)-coloring or b-fold coloring, we are given a graph G and a set of a colors, and the task is to assign a subset of b colors to each vertex of G so that adjacent vertices receive disjoint color subsets. This natural generalization of the classic coloring problem (the b=1 case) is equivalent to finding a homomorphism to the Kneser graph KG_{a,b}, and gives relaxations approaching the fractional chromatic number. We study the complexity of determining whether a graph has an (a:b)-coloring. Our main result is that this problem does not admit an algorithm with running time f(b) * 2^{o(log b) n}, for any computable f(b), unless the Exponential Time Hypothesis (ETH) fails. A (b+1)^n * poly(n)-time algorithm due to Nederlof [2008] shows that this is tight. A direct corollary of our result is that the graph homomorphism problem does not admit a 2^O(n+h) algorithm unless ETH fails, even if the target graph is required to be a Kneser graph. This refines the understanding given by the recent lower bound of Cygan et al. [SODA 2016]. The crucial ingredient in our hardness reduction is the usage of detecting matrices of Lindström [Canad. Math. Bull., 1965], which is a combinatorial tool that, to the best of our knowledge, has not yet been used for proving complexity lower bounds. As a side result, we prove that the running time of the algorithms of Abasi et al. [MFCS 2014] and of Gabizon et al. [ESA 2015] for the r-monomial detection problem are optimal under ETH.
  • 关键词:multicoloring; Kneser graph homomorphism; ETH lower bound
国家哲学社会科学文献中心版权所有