首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization
  • 本地全文:下载
  • 作者:St{\'e}phane Bessy ; Marin Bougeret ; Jocelyn Thiebaut
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:87
  • 页码:14:1-14:13
  • DOI:10.4230/LIPIcs.ESA.2017.14
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a tournament T and a positive integer k, the C_3-Packing-T asks if there exists a least k (vertex-)disjoint directed 3-cycles in T. This is the dual problem in tournaments of the classical minimal feedback vertex set problem. Surprisingly C_3-Packing-T did not receive a lot of attention in the literature. We show that it does not admit a PTAS unless P=NP, even if we restrict the considered instances to sparse tournaments, that is tournaments with a feedback arc set (FAS) being a matching. Focusing on sparse tournaments we provide a (1+6/(c-1)) approximation algorithm for sparse tournaments having a linear representation where all the backward arcs have "length" at least c. Concerning kernelization, we show that C_3-Packing-T admits a kernel with O(m) vertices, where m is the size of a given feedback arc set. In particular, we derive a O(k) vertices kernel for C_3-Packing-T when restricted to sparse instances. On the negative size, we show that C_3-Packing-T does not admit a kernel of (total bit) size O(k^{2-epsilon}) unless NP is a subset of coNP / Poly. The existence of a kernel in O(k) vertices for C_3-Packing-T remains an open question.
  • 关键词:Tournament Triangle packing; Feedback arc set; Approximation algorithms; Parameterized algorithms
国家哲学社会科学文献中心版权所有