首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On Supergraphs Satisfying CMSO Properties
  • 本地全文:下载
  • 作者:Mateus de Oliveira Oliveira
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:82
  • 页码:33:1-33:15
  • DOI:10.4230/LIPIcs.CSL.2017.33
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let CMSO denote the counting monadic second order logic of graphs. We give a constructive proof that for some computable function f, there is an algorithm A that takes as input a CMSO sentence F, a positive integer t, and a connected graph G of maximum degree at most D, and determines, in time f(|F|,t)*2^O(D*t)*|G|^O(t), whether G has a supergraph G' of treewidth at most t such that G' satisfies F. The algorithmic metatheorem described above sheds new light on certain unresolved questions within the framework of graph completion algorithms. In particular, using this metatheorem, we provide an explicit algorithm that determines, in time f(d)*2^O(D*d)*|G|^O(d), whether a connected graph of maximum degree D has a planar supergraph of diameter at most d. Additionally, we show that for each fixed k, the problem of determining whether G has a k-outerplanar supergraph of diameter at most d is strongly uniformly fixed parameter tractable with respect to the parameter d. This result can be generalized in two directions. First, the diameter parameter can be replaced by any contraction-closed effectively CMSO-definable parameter p. Examples of such parameters are vertex-cover number, dominating number, and many other contraction-bidimensional parameters. In the second direction, the planarity requirement can be relaxed to bounded genus, and more generally, to bounded local treewidth.
  • 关键词:On Supergraphs Satisfying CMSO Properties
国家哲学社会科学文献中心版权所有