摘要:Graphs are widely used to model execution dependencies in applications. In particular, the NP-complete problem of partitioning a graph under constraints receives enormous attention by researchers because of its applicability in multiprocessor scheduling. We identified the additional constraint of acyclic dependencies between blocks when mapping streaming applications to a heterogeneous embedded multiprocessor. Existing algorithms and heuristics do not address this requirement and deliver results that are not applicable for our use-case. In this work, we show that this more constrained version of the graph partitioning problem is NP-complete and present heuristics that achieve a close approximation of the optimal solution found by an exhaustive search for small problem instances and much better scalability for larger instances. In addition, we can show a positive impact on the schedule of a real imaging application that improves communication volume and execution time.
关键词:Graph Partitioning; Computer Vision and Imaging Applications