首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:The Minrank of Random Graphs
  • 本地全文:下载
  • 作者:Alexander Golovnev ; Oded Regev ; Omri Weinstein
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:81
  • 页码:46:1-46:13
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2017.46
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The minrank of a directed graph G is the minimum rank of a matrix M that can be obtained from the adjacency matrix of G by switching some ones to zeros (i.e., deleting edges) and then setting all diagonal entries to one. This quantity is closely related to the fundamental information-theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS'06), network coding and distributed storage, and to Valiant's approach for proving superlinear circuit lower bounds (Valiant, Boolean Function Complexity '92). We prove tight bounds on the minrank of directed Erdos-Renyi random graphs G(n,p) for all regimes of 0
  • 关键词:circuit complexity; index coding; information theory
国家哲学社会科学文献中心版权所有