首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:On Axis-Parallel Tests for Tensor Product Codes
  • 本地全文:下载
  • 作者:Alessandro Chiesa ; Peter Manohar ; Igor Shinkar
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:81
  • 页码:39:1-39:22
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2017.39
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Many low-degree tests examine the input function via its restrictions to random hyperplanes of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests. In this paper we study tests that only consider restrictions along axis-parallel hyperplanes, which have been studied by Polishchuk and Spielman (1994) and Ben-Sasson and Sudan (2006). While such tests are necessarily "weaker", they work for a more general class of codes, namely tensor product codes. Moreover, axis-parallel tests play a key role in constructing LTCs with inverse polylogarithmic rate and short PCPs (Polishchuk, Spielman 1994; Ben-Sasson, Sudan 2008; Meir 2010). We present two results on axis-parallel tests. (1) Bivariate low-degree testing with low-agreement. We prove an analogue of the Bivariate Low-Degree Testing Theorem of Polishchuk and Spielman in the low-agreement regime, albeit with much larger field size. Namely, for the 2-wise tensor product of the Reed-Solomon code, we prove that for sufficiently large fields, the 2-query variant of the axis-parallel line test (row-vs-column test) works for arbitrarily small agreement. Prior analyses of axis-parallel tests assumed high agreement, and no results for such tests in the low-agreement regime were known. Our proof technique deviates significantly from that of Polishchuk and Spielman, which relies on algebraic methods such as Bezout's Theorem, and instead leverages a fundamental result in extremal graph theory by Kovari, Sos, and Turan. To our knowledge, this is the first time this result is used in the context of low-degree testing. (2) Improved robustness for tensor product codes. Robustness is a strengthening of local testability that underlies many applications. We prove that the axis-parallel hyperplane test for the m-wise tensor product of a linear code with block length n and distance d is Omega(d^m/n^m)-robust. This improves on a theorem of Viderman (2012) by a factor of 1/poly(m). While the improvement is not large, we believe that our proof is a notable simplification compared to prior work.
  • 关键词:tensor product codes; locally testable codes; low-degree testing; extremal graph theory
国家哲学社会科学文献中心版权所有