首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere
  • 本地全文:下载
  • 作者:Vijay Bhattiprolu ; Venkatesan Guruswami ; Euiwoong Lee
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:81
  • 页码:31:1-31:20
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2017.31
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:For an n-variate order-d tensor A, define A_{max} := sup_{||x||_2 = 1} , to be the maximum value taken by the tensor on the unit sphere. It is known that for a random tensor with i.i.d. +1/-1 entries, A_{max} <= sqrt(n.d.log(d)) w.h.p. We study the problem of efficiently certifying upper bounds on A_{max} via the natural relaxation from the Sum of Squares (SoS) hierarchy. Our results include: * When A is a random order-q tensor, we prove that q levels of SoS certifies an upper bound B on A_{max} that satisfies B <= A_{max} * (n/q^(1-o(1)))^(q/4-1/2) w.h.p. Our upper bound improves a result of Montanari and Richard (NIPS 2014) when q is large. * We show the above bound is the best possible up to lower order terms, namely the optimum of the level-q SoS relaxation is at least A_{max} * (n/q^(1+o(1)))^(q/4-1/2). * When A is a random order-d tensor, we prove that q levels of SoS certifies an upper bound B on A_{max} that satisfies B <= A_{max} * (n*polylog/q)^(d/4 - 1/2) w.h.p. For growing q, this improves upon the bound certified by constant levels of SoS. This answers in part, a question posed by Hopkins, Shi, and Steurer (COLT 2015), who tightly characterized constant levels of SoS.
  • 关键词:Sum-of-Squares; Optimization over Sphere; Random Polynomials
国家哲学社会科学文献中心版权所有