首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Approximating Incremental Combinatorial Optimization Problems
  • 本地全文:下载
  • 作者:Michel X. Goemans ; Francisco Unda
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:81
  • 页码:6:1-6:14
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2017.6
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider incremental combinatorial optimization problems, in which a solution is constructed incrementally over time, and the goal is to optimize not the value of the final solution but the average value over all timesteps. We consider a natural algorithm of moving towards a global optimum solution as quickly as possible. We show that this algorithm provides an approximation guarantee of (9+sqrt(21))/15 > 0.9 for a large class of incremental combinatorial optimization problems defined axiomatically, which includes (bipartite and non-bipartite) matchings, matroid intersections, and stable sets in claw-free graphs. Furthermore, our analysis is tight.
  • 关键词:Approximation algorithm; matching; incremental problems; matroid intersection; integral polytopes; stable sets
国家哲学社会科学文献中心版权所有