首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Representations of Monotone Boolean Functions by Linear Programs
  • 本地全文:下载
  • 作者:Mateus de Oliveira Oliveira ; Pavel Pudl{\'a}k
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:79
  • 页码:3:1-3:14
  • DOI:10.4230/LIPIcs.CCC.2017.3
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce the notion of monotone linear-programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results. 1. MLP circuits are superpolynomially stronger than monotone Boolean circuits. 2. MLP circuits are exponentially stronger than monotone span programs. 3. MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovasz-Schrijver proof systems, and for mixed Lovasz-Schrijver proof systems. 4. The Lovasz-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system. This is the first result showing a separation between these two proof systems. Finally, we discuss connections between the problem of proving lower bounds on the size of MLPs and the problem of proving lower bounds on extended formulations of polytopes.
  • 关键词:Monotone Linear Programming Circuits; Lov{\'a
国家哲学社会科学文献中心版权所有