首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:brms: An R Package for Bayesian Multilevel Models Using Stan
  • 本地全文:下载
  • 作者:Paul-Christian Bürkner
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2017
  • 卷号:80
  • 期号:1
  • 页码:1-28
  • DOI:10.18637/jss.v080.i01
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:The brms package implements Bayesian multilevel models in R using the probabilistic programming language Stan. A wide range of distributions and link functions are supported, allowing users to fit - among others - linear, robust linear, binomial, Poisson, survival, ordinal, zero-inflated, hurdle, and even non-linear models all in a multilevel context. Further modeling options include autocorrelation of the response variable, user defined covariance structures, censored data, as well as meta-analytic standard errors. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. In addition, model fit can easily be assessed and compared with the Watanabe-Akaike information criterion and leave-one-out cross-validation.
  • 关键词:Bayesian inference;multilevel model;ordinal data;MCMC;Stan;R
国家哲学社会科学文献中心版权所有