首页    期刊浏览 2025年03月03日 星期一
登录注册

文章基本信息

  • 标题:Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents
  • 本地全文:下载
  • 作者:Mark J. Hickman ; Leona D. Samson
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1999
  • 卷号:96
  • 期号:19
  • 页码:10764-10769
  • DOI:10.1073/pnas.96.19.10764
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:All cells are unavoidably exposed to chemicals that can alkylate DNA to form genotoxic damage. Among the various DNA lesions formed, O6-alkylguanine lesions can be highly cytotoxic, and we recently demonstrated that O6-methylguanine (O6MeG) and O6-chloroethylguanine (O6CEG) specifically initiate apoptosis in hamster cells. Here we show, in both hamster and human cells, that the MutS branch of the DNA mismatch repair pathway (but not the MutS{beta} branch) is absolutely required for signaling the initiation of apoptosis in response to O6MeGs and is partially required for signaling apoptosis in response to O6CEGs. Further, O6MeG lesions signal the stabilization of the p53 tumor suppressor, and such signaling is also MutS-dependent. Despite this, MutS-dependent apoptosis can be executed in a p53-independent manner. DNA mismatch repair status did not influence the response of cells to other inducers of p53 and apoptosis. Thus, it appears that mismatch repair status, rather than p53 status, is a strong indicator of the susceptibility of cells to alkylation-induced apoptosis. This experimental system will allow dissection of the signal transduction events that couple a specific type of DNA base lesion with the final outcome of apoptotic cell death.
国家哲学社会科学文献中心版权所有