期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1993
卷号:90
期号:4
页码:1300-1304
DOI:10.1073/pnas.90.4.1300
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Antisense oligonucleotides hold considerable promise both as research tools for inhibiting gene expression and as agents for the treatment of a myriad of human diseases. However, targeted destruction of RNA has been difficult to achieve in a versatile, efficient, and reliable manner. We have developed an effective strategy for cleaving unique RNA sequences with 2-5A-dependent RNase, an endoribonuclease that mediates inhibitory effects of interferon on virus infection and is activated by 5'-phosphorylated 2'-5'-linked oligoadenylates known as 2-5A [pn5' A2'(p5' A2')mp5'A], resulting in the cleavage of single-stranded RNA predominantly after UpUp and UpAp sequences. To direct 2-5A-dependent RNase to cleave unique RNA sequences, p5' A2' p5' A2'p5'A was covalently linked to an antisense oligonucleotide to yield a chimeric molecule (2-5A:AS). The antisense oligonucleotide component of 2-5A:AS bound a specific RNA sequence while the accompanying 2-5A component activated 2-5A-dependent RNase, thereby causing the cleavage of the RNA in the targeted sequence. This strategy was demonstrated by inducing specific cleavage within a modified human immunodeficiency virus type 1 vif mRNA in a cell-free system from human lymphoblastoid cells. Because 2-5A-dependent RNase is present in most mammalian cells, the control of gene expression based on this technology--including therapies for cancer, viral infections, and certain genetic diseases--can be envisioned.