期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1986
卷号:83
期号:11
页码:4099-4103
DOI:10.1073/pnas.83.11.4099
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Ca2+-dependent K+ and Cl- currents were recorded in isolated and dialyzed rat lacrimal gland cells by use of the tight-seal whole-cell recording technique. Under control conditions, application of acetylcholine (0.5-1.0 microM) resulted in the full activation of both types of current. When 50-200 microM guanosine 5'-[gamma-thio]triphosphate (GTP[S], a nonhydrolyzable GTP analogue) was added to the intracellular solution, activation of both currents was seen with 1 nM acetylcholine, a dose 1/100th that needed under control conditions. Dialysis with solutions containing 200 microM GTP or cAMP had no, or only slight, potentiation effects. The effects of GTP[S] were obtained only when ATP was included in the intracellular solution. The potentiated responses to acetylcholine were blocked by increasing 10-fold the intracellular Ca2+-buffering capacity and were not dependent on external Ca2+. Thus, the potentiated responses appeared to result from a release of Ca2+ from internal stores. GTP[S] also greatly potentiated the Ca2+-dependent adrenergic (norepinephrine) response of this preparation. In addition, GTP[S] elicited in some cells transient responses without application of acetylcholine or norepinephrine. Finally, rapid and sustained responses were seen as soon as the cells were dialyzed with inositol trisphosphate (20 microM). These findings are discussed in terms of a possible role of a GTP-binding protein as a link between activation of muscarinic or adrenergic receptors and initiation of Ca2+ release by inositol trisphosphate.