首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination
  • 本地全文:下载
  • 作者:Yueting Zhang ; Azeb Tadesse Argaw ; Blake T. Gurfein
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:45
  • 页码:19162-19167
  • DOI:10.1073/pnas.0902834106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:In the developing CNS, Notch1 and its ligand, Jagged1, regulate oligodendrocyte differentiation and myelin formation, but their role in repair of demyelinating lesions in diseases such as multiple sclerosis remains unresolved. To address this question, we generated a mouse model in which we targeted Notch1 inactivation to oligodendrocyte progenitor cells (OPCs) using Olig1Cre and a floxed Notch1 allele, Notch112f. During CNS development, OPC differentiation was potentiated in Olig1Cre:Notch112f/12f mice. Importantly, in adults, remyelination of demyelinating lesions was also accelerated, at the expense of proliferation within the progenitor population. Experiments in vitro confirmed that Notch1 signaling was permissive for OPC expansion but inhibited differentiation and myelin formation. These studies also revealed that astrocytes exposed to TGF-{beta}1 restricted OPC maturation via Jagged1-Notch1 signaling. These data suggest that Notch1 signaling is one of the mechanisms regulating OPC differentiation during CNS remyelination. Thus, Notch1 may represent a potential therapeutical avenue for lesion repair in demyelinating disease.
  • 关键词:autoimmunity ; CNS repair ; multiple sclerosis ; oligodendrocyte progenitor ; myelin
国家哲学社会科学文献中心版权所有