首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Large spinose microfossils in Ediacaran rocks as resting stages of early animals
  • 本地全文:下载
  • 作者:Phoebe A. Cohen ; Andrew H. Knoll ; Robin B. Kodner
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2009
  • 卷号:106
  • 期号:16
  • 页码:6519-6524
  • DOI:10.1073/pnas.0902322106
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Large (>100 {micro}m), profusely ornamented microfossils comprise a distinctive paleontological component of sedimentary rocks deposited during the Ediacaran Period (635-542 million years ago). Smaller spinose fossils in Paleozoic rocks have commonly been interpreted as algal cysts or phycomata, but the Ediacaran populations differ from modern algal analogs in size, shape, ultrastructure, and internal contents. In contrast, cysts formed during the diapause egg-resting stages of many metazoans share features of size, ornamentation, and internal contents with large ornamented Ediacaran microfossils (LOEMs). Moreover, transmission electron microscopic observations of animal-resting cysts reveal a 3-layer wall ultrastructure comparable to that of LOEM taxa. Interpretation of these distinctive Ediacaran microfossils as resting stages in early metazoan life cycles offers additional perspectives on their functional morphology and stratigraphic distribution. Based on comparisons with modern marine invertebrates, the recalcitrant life stage represented by LOEMs is interpreted as an evolutionary response to prolonged episodes of bottom water anoxia in Ediacaran shelf and platform environments. As predicted by this hypothesis, the later Ediacaran disappearance of LOEM taxa coincides with geochemical evidence for a marked decline in the extent of oxygen-depleted waters impinging on continental shelves and platforms. Thus, the form, diversity, and stratigraphic range of LOEMs illuminate life cycle evolution in early animals as influenced by the evolving redox state of the oceans.
  • 关键词:acritarchs ; Diapause egg cysts ; origin of metazoans ; paleoenvironment
国家哲学社会科学文献中心版权所有