首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward
  • 本地全文:下载
  • 作者:Zheng Liu ; Barry J. Richmond ; Elisabeth A. Murray
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2004
  • 卷号:101
  • 期号:33
  • 页码:12336-12341
  • DOI:10.1073/pnas.0403639101
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:When schedules of several operant trials must be successfully completed to obtain a reward, monkeys quickly learn to adjust their behavioral performance by using visual cues that signal how many trials have been completed and how many remain in the current schedule. Bilateral rhinal (perirhinal and entorhinal) cortex ablations irreversibly prevent this learning. Here, we apply a recombinant DNA technique to investigate the role of dopamine D2 receptor in rhinal cortex for this type of learning. Rhinal cortex was injected with a DNA construct that significantly decreased D2 receptor ligand binding and temporarily produced the same profound learning deficit seen after ablation. However, unlike after ablation, the D2 receptor-targeted, DNA-treated monkeys recovered cue-related learning after 11-19 weeks. Injecting a DNA construct that decreased N-methyl-D-aspartate but not D2 receptor ligand binding did not interfere with learning associations between the cues and the schedules. A second D2 receptor-targeted DNA treatment administered after either recovery from a first D2 receptor-targeted DNA treatment (one monkey), after N-methyl-D-aspartate receptor-targeted DNA treatment (two monkeys), or after a vector control treatment (one monkey) also induced a learning deficit of similar duration. These results suggest that the D2 receptor in primate rhinal cortex is essential for learning to relate the visual cues to the schedules. The specificity of the receptor manipulation reported here suggests that this approach could be generalized in this or other brain pathways to relate molecular mechanisms to cognitive functions.
  • 关键词:perirhinal cortex ; entorhinal cortex ; antisense ; dopamine ; N-methyl-d-aspartate receptor
国家哲学社会科学文献中心版权所有